Preskočiť na obsah
Hlavné menu
Hlavné menu
presunúť do postranného panelu
skryť
Navigácia
Hlavná stránka
Portál komunity
Kaviareň
Posledné úpravy
Náhodná stránka
Pomocník
Hľadať
Hľadať
Vzhľad
Prispieť
Vytvoriť účet
Prihlásiť sa
Osobné nástroje
Prispieť
Vytvoriť účet
Prihlásiť sa
Stránky pre odhlásených redaktorov
zistiť viac
Príspevky
Diskusia
Zoznam integrálov exponenciálnych funkcií
34 jazykov
العربية
Български
Bosanski
Català
Čeština
Чӑвашла
English
Español
Euskara
فارسی
Français
Galego
Hrvatski
Magyar
Հայերեն
Bahasa Indonesia
Italiano
日本語
ភាសាខ្មែរ
한국어
Македонски
Nederlands
Português
Română
Русский
Srpskohrvatski / српскохрватски
Slovenščina
Српски / srpski
தமிழ்
Türkçe
Українська
Oʻzbekcha / ўзбекча
Tiếng Việt
中文
Upraviť odkazy
Stránka
Diskusia
slovenčina
Čítať
Upraviť
Upraviť zdroj
Zobraziť históriu
Nástroje
Nástroje
presunúť do postranného panelu
skryť
Akcie
Čítať
Upraviť
Upraviť zdroj
Zobraziť históriu
Všeobecné
Odkazy na túto stránku
Súvisiace úpravy
Nahrať súbor
Špeciálne stránky
Trvalý odkaz
Informácie o stránke
Citovať túto stránku
Získať skrátené URL
Stiahnuť QR kód
Tlačiť/exportovať
Vytvoriť knihu
Stiahnuť ako PDF
Verzia pre tlač
V iných projektoch
Položka Wikidata
Vzhľad
presunúť do postranného panelu
skryť
z Wikipédie, slobodnej encyklopédie
Toto je zoznam
integrálov
(primitívnych funkcií)
exponenciálnych funkcií
.
∫
e
c
x
d
x
=
1
c
e
c
x
{\displaystyle \int e^{cx}\;dx={\frac {1}{c}}e^{cx}}
∫
a
c
x
d
x
=
1
c
ln
a
a
c
x
(pro
a
>
0
,
a
≠
1
)
{\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}}a^{cx}\qquad {\mbox{(pro }}a>0,{\mbox{ }}a\neq 1{\mbox{)}}}
∫
x
e
c
x
d
x
=
e
c
x
c
2
(
c
x
−
1
)
{\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}}{c^{2}}}(cx-1)}
∫
x
2
e
c
x
d
x
=
e
c
x
(
x
2
c
−
2
x
c
2
+
2
c
3
)
{\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}
∫
x
n
e
c
x
d
x
=
1
c
x
n
e
c
x
−
n
c
∫
x
n
−
1
e
c
x
d
x
{\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}dx}
∫
e
c
x
d
x
x
=
ln
|
x
|
+
∑
i
=
1
∞
(
c
x
)
i
i
⋅
i
!
{\displaystyle \int {\frac {e^{cx}\;dx}{x}}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}}
∫
e
c
x
d
x
x
n
=
1
n
−
1
(
−
e
c
x
x
n
−
1
+
c
∫
e
c
x
x
n
−
1
d
x
)
(pro
n
≠
1
)
{\displaystyle \int {\frac {e^{cx}\;dx}{x^{n}}}={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,dx\right)\qquad {\mbox{(pro }}n\neq 1{\mbox{)}}}
∫
e
c
x
ln
x
d
x
=
1
c
e
c
x
ln
|
x
|
−
Ei
(
c
x
)
{\displaystyle \int e^{cx}\ln x\;dx={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)}
∫
e
c
x
sin
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
sin
b
x
−
b
cos
b
x
)
{\displaystyle \int e^{cx}\sin bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)}
∫
e
c
x
cos
b
x
d
x
=
e
c
x
c
2
+
b
2
(
c
cos
b
x
+
b
sin
b
x
)
{\displaystyle \int e^{cx}\cos bx\;dx={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)}
∫
e
c
x
sin
n
x
d
x
=
e
c
x
sin
n
−
1
x
c
2
+
n
2
(
c
sin
x
−
n
cos
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
sin
n
−
2
x
d
x
{\displaystyle \int e^{cx}\sin ^{n}x\;dx={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;dx}
∫
e
c
x
cos
n
x
d
x
=
e
c
x
cos
n
−
1
x
c
2
+
n
2
(
c
cos
x
+
n
sin
x
)
+
n
(
n
−
1
)
c
2
+
n
2
∫
e
c
x
cos
n
−
2
x
d
x
{\displaystyle \int e^{cx}\cos ^{n}x\;dx={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;dx}
∫
x
e
c
x
2
d
x
=
1
2
c
e
c
x
2
{\displaystyle \int xe^{cx^{2}}\;dx={\frac {1}{2c}}\;e^{cx^{2}}}
∫
1
σ
2
π
e
−
(
x
−
μ
)
2
/
2
σ
2
d
x
=
1
2
σ
(
1
+
erf
x
−
μ
σ
2
)
{\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;dx={\frac {1}{2\sigma }}(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}})}
∫
e
x
2
d
x
=
e
x
2
(
∑
j
=
0
n
−
1
c
2
j
1
x
2
j
+
1
)
+
(
2
n
−
1
)
c
2
n
−
2
∫
e
x
2
x
2
n
d
x
plati pro
n
>
0
,
{\displaystyle \int e^{x^{2}}\,dx=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;dx\quad {\mbox{plati pro }}n>0,}
kde
c
2
j
=
1
⋅
3
⋅
5
⋯
(
2
j
−
1
)
2
j
+
1
=
2
j
!
j
!
2
2
j
+
1
.
{\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {2j\,!}{j!\,2^{2j+1}}}\ .}
∫
−
∞
∞
e
−
a
x
2
d
x
=
π
a
{\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,dx={\sqrt {\pi \over a}}}
(
Gaussov integrál
)
∫
0
∞
x
2
n
e
−
x
2
/
a
2
d
x
=
π
(
2
n
)
!
n
!
(
a
2
)
2
n
+
1
{\displaystyle \int _{0}^{\infty }x^{2n}e^{-{x^{2}}/{a^{2}}}\,dx={\sqrt {\pi }}{(2n)! \over {n!}}{\left({\frac {a}{2}}\right)}^{2n+1}}
∫
0
2
π
e
x
cos
θ
d
θ
=
2
π
I
0
(
x
)
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)}
(
I
0
{\displaystyle I_{0}}
je modifikovaná
Besselova funkcia
prvého druhu)
∫
0
2
π
e
x
cos
θ
+
y
sin
θ
d
θ
=
2
π
I
0
(
x
2
+
y
2
)
{\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}
Kategória
:
Integrálny počet