Preskočiť na obsah

Greenova-Taova veta

z Wikipédie, slobodnej encyklopédie

Greenova-Taova veta je veta z oblasti aditívnej teórie čísel, podľa ktorej množina prvočísel obsahuje konečné aritmetické postupnosti ľubovolnej dĺžky. Inak povedané, pre každé prirodzené číslo existuje -prvková aritmetická postupnosť pozostávajúca výhradne z prvočísel. Greenova-Taova veta je špeciálnym prípadom Erdősovej-Turánovej hypotézy.

Historické poznámky

[upraviť | upraviť zdroj]
  • Vetu dokázali Ben Green a Terence Tao v roku 2004.
  • V roku 2006 dokázali Tao a Tamar Ziegler silnejšie tvrdenie, podľa ktorého pre ľubovoľnú -ticu polynomických funkcii bez absolútneho člena nadobúdajúcich iba celočíselné hodnoty existuje nekonečne veľa celých čísel a takých, že všetky hodnoty sú prvočíselné.

Zaujímavosti

[upraviť | upraviť zdroj]

Greenova-Taova veta je príkladom existenčného tvrdenia. Veta iba garantuje existenciu podpostupnosti určitej dĺžky, nehovorí však nič o tom, ako táto postupnosť vyzerá. Nájsť príklad dostatočne dlhej aritmetickej postupnosti v prvočíslach nie je jednoduchá úloha. Ku dňu 18.1.2007 je najdlhšou známou aritmetickou postupnoťou v prvočíslach 24-prvková postupnosť

Externé odkazy

[upraviť | upraviť zdroj]