Preskočiť na obsah

Nesúdeliteľnosť

z Wikipédie, slobodnej encyklopédie
(Presmerované z Nesúdeliteľné čísla)

Nesúdeliteľné čísla sú čísla, ktorých jediný kladný celočíselný spoločný deliteľ je 1 (t.j. 1 je ich najväčší spoločný deliteľ). Čísla ktoré nie sú nesúdelitelné, sú súdeliteľné.

Príkladom nesúdeliteľnosti sú dve alebo viac prvočísel. Ďalšími netrivialnými príkladmi sú napr. 23 , 51.

Vlastnosti

[upraviť | upraviť zdroj]
Čísla 4 a 9 sú nesúdeliteľné, keďže diagonála 4x9 nepretína žiaden bod s celočíselnýmmi súradnicami, okrem krajných bodov.

Keď čísla a;b sú nesúdelitelné, platí, že

  • Žiadne prvočíslo nedelí aj a aj b
  • existujú celé čísla x;y pre ktoré platí: ax+by=1, pozri Bézoutova rovnosť
  • najmenší spoločný násobok čísel a, b je a.b
  • ak a, b sú nesúdeliteľné a a je deliteľom b.c, potom a je deliteľom c
  • čísla a, b sú nesúdeliteľné práve vtedy a len vtedy, ak bod v karteziánskej sústave so súradnicami [a,b] je "viditeľný" z bodu [0,0], pozri obrázok vpravo
  • dve náhodne zvolené celé čísla sú nesúdeliteľné s pravdepodobnosťou
  • čísla a, b sú nesúdeliteľné práve vtedy a len vtedy, ak sú nesúdeliteľné aj a