Portál:Matematika/Odporúčaný článok/49 2011
Rungeho jav je v numerickej matematike názov pre problém, ktorý vzniká pri interpolácii polynómom vyššieho stupňa. Je pomenovaný po Carlovi Davidovi Tolméovi Rungeovi, ktorý ho objavil, keď skúmal chybu polynomiálnej interpolácie istej triedy funkcií, dnes známych ako Rungeho funkcie. Tento jav je podobný Gibbsovmu javu pri Fourierových radoch.
Problém
[upraviť zdroj]Uvažujme funkciu:
Runge objavil, že pokiaľ sa táto funkcia (nazývaná aj Rungeho funkcia) interpoluje na intervale pomocou ekvidištančných uzlov , teda
polynómom Pn(x) stupňa n, výsledná interpolačná krivka v okolí krajov intervalu (teda bodov −1 a 1) silne osciluje (čím narastá chyba interpolácie). Dá sa dokázať, že chyba interpolácie speje s rastúcim stupňom polynómu do nekonečna, teda platí:
Na druhej strane však Weierstrassova veta o aproximácii hovorí, že existuje postupnosť aproximujúcich polynómov, pre ktoré sa chyba limitne blíži k nule. Z toho vyplýva, že polynómy vysokého stupňa nemusia byť pri použití ekvidištančných uzlov optimálnym riešením.