Portál:Matematika/Odporúčaný článok/9 2011
Kombinácia, presnejšie kombinácia k – tej triedy z n prvkov množiny M je ľubovoľná k-prvková podmnožina n-prvkovej množiny M. Počet všetkých kombinácií k-tej triedy sa teda často využíva pri riešení úloh, kde je potrebné zistiť, koľkými spôsobmi možno vybrať spomedzi n prvkov skupinu k prvkov, pričom nezáleží na poradí výberu.
Takto definované kombinácie sa niekedy tiež označujú ako kobinácie bez opakovania, keďže koncept množiny a podmnožiny neumožňuje zachytiť fenomén opakovania prvkov. Existujú však aj kombinácie s opakovaním, ktorých počet je počet možností, ako vybrať k prvkov spomedzi n tak, že sa môžu aj opakovať.
Kombinácie bez opakovania
[upraviť zdroj]Definícia
[upraviť zdroj]Kombinácie bez opakovania k-tej triedy z n prvkov množiny M je ľubovoľná k-prvková podmnožina množiny M. Z toho vyplýva, že množinu všetkých kombinácií k-tej triedy z množiny M definujeme ako podmnožinu potenčnej množiny množiny M (označujeme P(M)) takú, že obsahuje práve všetky k-prvkové množiny patriace do tejto potenčnej množiny. Takúto podmnožinu označujeme . Platí teda, že množina všetkých kombinácií bez opakovania k-tej triedy z množiny M je definovaná ako: