z Wikipédie, slobodnej encyklopédie
Arkus sínus a Arkus kosínus
Cyklometrická funkcia je matematická funkcia inverzná ku funkciám goniometrickým .
Medzi cyklometrické funkcie patria:
Aby mohla k ľubovoľnej funkcii existovať inverzná funkcia , daná funkcia musí byť prostá , to znamená: rôznym dvom prvkom musí priraďovať dve rôzne hodnoty. Goniometrické funkcie sú ale periodické, a teda nie sú prosté. Preto ak chceme uvažovať o cyklometrických funkciách musíme najskôr ošetriť ich definičný obor a taktiež aj definičné obory goniometrických funkcií – to znamená, že musíme vybrať len tú podmnožinu definičného oboru danej goniometrickej funkcie, na ktorej je prostá.
Goniometrické funkcie
Cyklometrické funkcie
Sínus:
sin
(
x
)
{\displaystyle \sin(x)}
pre
x
∈
R
{\displaystyle x\in \mathbb {R} }
Arkus sínus:
arcsin
(
x
)
{\displaystyle \arcsin(x)}
pre
x
∈<
−
1
;
1
>
{\displaystyle x\in <-1;1>}
Cosínus:
cos
(
x
)
{\displaystyle \cos(x)}
pre
x
∈
R
{\displaystyle x\in \mathbb {R} }
Arkus cosínus:
arccos
(
x
)
{\displaystyle \arccos(x)}
pre
x
∈<
−
1
;
1
>
{\displaystyle x\in <-1;1>}
Tangens:
tg
(
x
)
{\displaystyle \operatorname {tg} (x)}
pre
x
∈
R
−
{
π
2
+
k
π
}
;
k
∈
Z
{\displaystyle x\in \mathbb {R} -\{{\frac {\pi }{2}}+k\pi \};k\in \mathbb {Z} }
Arkus tangens:
arctg
(
x
)
{\displaystyle \operatorname {arctg} (x)}
pre
x
∈
R
{\displaystyle x\in R}
Cotangens:
ctg
(
x
)
{\displaystyle \operatorname {ctg} (x)}
pre
x
∈
R
−
{
k
π
}
;
k
∈
Z
{\displaystyle x\in \mathbb {R} -\{k\pi \};k\in \mathbb {Z} }
Arkus cotangens:
arcctg
(
x
)
{\displaystyle \operatorname {arcctg} (x)}
pre
x
∈
R
{\displaystyle x\in R}
arcsin
(
sin
x
)
=
x
{\displaystyle \arcsin(\sin x)=x\!}
, ak platí
|
x
|
≤
π
2
{\displaystyle \ |x|\leq {\frac {\pi }{2}}}
sin
(
arcsin
x
)
=
x
{\displaystyle \sin(\arcsin x)=x\!}
, ak platí
|
x
|
≤
1
{\displaystyle \ |x|\leq 1}
arccos
(
cos
x
)
=
x
{\displaystyle \arccos(\cos x)=x\!}
, ak platí
0
≤
x
≤
π
{\displaystyle \ 0\leq x\leq \pi }
cos
(
arccos
x
)
=
x
{\displaystyle \cos(\arccos x)=x\!}
, ak platí
|
x
|
≤
1
{\displaystyle \ |x|\leq 1}
arctg
(
tg
x
)
=
x
{\displaystyle \operatorname {arctg} (\operatorname {tg} x)=x\!}
, ak platí
|
x
|
<
π
2
{\displaystyle \ |x|<{\frac {\pi }{2}}}
tg
(
arctg
x
)
=
x
{\displaystyle \operatorname {tg} (\operatorname {arctg} x)=x\!}
arccotg
(
cotg
x
)
=
x
{\displaystyle \operatorname {arccotg} (\operatorname {cotg} x)=x\!}
, ak platí
0
<
x
<
π
{\displaystyle \ 0<x<\pi }
cotg
(
arcotg
x
)
=
x
{\displaystyle \operatorname {cotg} (\operatorname {arcotg} x)=x\!}
arcsin
x
=
π
2
−
arccos
x
=
arctg
x
1
−
x
2
=
π
2
−
arccotg
x
1
−
x
2
{\displaystyle \arcsin x={\frac {\pi }{2}}-\arccos x=\operatorname {arctg} {\frac {x}{\sqrt {1-x^{2}}}}={\frac {\pi }{2}}-\operatorname {arccotg} {\frac {x}{\sqrt {1-x^{2}}}}}
arccos
x
=
π
2
−
arcsin
x
=
π
2
−
arctg
x
1
−
x
2
=
arccotg
x
1
−
x
2
{\displaystyle \arccos x={\frac {\pi }{2}}-\arcsin x={\frac {\pi }{2}}-\operatorname {arctg} {\frac {x}{\sqrt {1-x^{2}}}}=\operatorname {arccotg} {\frac {x}{\sqrt {1-x^{2}}}}}
arctg
x
=
arcsin
x
1
+
x
2
=
π
2
−
arccos
x
1
+
x
2
=
π
2
−
arccotg
x
{\displaystyle \operatorname {arctg} x=\arcsin {\frac {x}{\sqrt {1+x^{2}}}}={\frac {\pi }{2}}-\arccos {\frac {x}{\sqrt {1+x^{2}}}}={\frac {\pi }{2}}-\operatorname {arccotg} x}
arccotg
x
=
π
2
−
arcsin
x
1
+
x
2
=
arccos
x
1
+
x
2
=
π
2
−
arctg
x
{\displaystyle \operatorname {arccotg} x={\frac {\pi }{2}}-\arcsin {\frac {x}{\sqrt {1+x^{2}}}}=\arccos {\frac {x}{\sqrt {1+x^{2}}}}={\frac {\pi }{2}}-\operatorname {arctg} x}
Pre
x
>
0
{\displaystyle x>0}
platí
arccotg
x
=
arctg
1
x
{\displaystyle \operatorname {arccotg} x=\operatorname {arctg} {\frac {1}{x}}}
Pre
x
<
0
{\displaystyle x<0}
platí
arccotg
x
=
π
+
arctg
1
x
{\displaystyle \operatorname {arccotg} x=\pi +\operatorname {arctg} {\frac {1}{x}}}
arcsin
(
−
x
)
=
−
arcsin
x
{\displaystyle \arcsin(-x)=-\arcsin x\!}
arccos
(
−
x
)
=
π
−
arccos
x
{\displaystyle \arccos(-x)=\pi -\arccos x\!}
arctg
(
−
x
)
=
−
arctg
x
{\displaystyle \operatorname {arctg} (-x)=-\operatorname {arctg} x\!}
arccotg
(
−
x
)
=
π
−
arccotg
x
{\displaystyle \operatorname {arccotg} (-x)=\pi -\operatorname {arccotg} x\!}
arcsin
x
+
arcsin
y
=
arcsin
[
x
1
−
y
2
+
y
1
−
x
2
]
,
{\displaystyle \arcsin x+\arcsin y=\arcsin[x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}],}
ak platí
x
y
≤
0
{\displaystyle \ xy\leq 0}
alebo
x
2
+
y
2
≤
1
{\displaystyle x^{2}+y^{2}\leq 1}
arcsin
x
+
arcsin
y
=
π
−
arcsin
[
x
1
−
y
2
+
y
1
−
x
2
]
,
{\displaystyle \arcsin x+\arcsin y=\pi -\arcsin[x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}],}
ak platí
x
>
0
,
y
>
0
,
x
2
+
y
2
>
1
{\displaystyle \ x>0,y>0,x^{2}+y^{2}>1}
arcsin
x
+
arcsin
y
=
−
π
−
arcsin
[
x
1
−
y
2
+
y
1
−
x
2
]
,
{\displaystyle \arcsin x+\arcsin y=-\pi -\arcsin[x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}],}
ak platí
x
<
0
,
y
<
0
,
x
2
+
y
2
>
1
{\displaystyle \ x<0,y<0,x^{2}+y^{2}>1}
arcsin
x
−
arcsin
y
=
arcsin
[
x
1
−
y
2
−
y
1
−
x
2
]
,
{\displaystyle \arcsin x-\arcsin y=\arcsin[x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}],}
ak platí
x
y
≥
0
{\displaystyle \ xy\geq 0}
alebo
x
2
+
y
2
≤
1
{\displaystyle x^{2}+y^{2}\leq 1}
arcsin
x
−
arcsin
y
=
π
−
arcsin
[
x
1
−
y
2
−
y
1
−
x
2
]
,
{\displaystyle \arcsin x-\arcsin y=\pi -\arcsin[x{\sqrt {1-y^{2}}}-y{\sqrt {1-x^{2}}}],}
ak platí
x
>
0
,
y
<
0
,
x
2
+
y
2
>
1
{\displaystyle \ x>0,y<0,x^{2}+y^{2}>1}
arcsin
x
−
arcsin
y
=
−
π
−
arcsin
[
x
1
−
y
2
+
y
1
−
x
2
]
,
{\displaystyle \arcsin x-\arcsin y=-\pi -\arcsin[x{\sqrt {1-y^{2}}}+y{\sqrt {1-x^{2}}}],}
ak platí
x
<
0
,
y
>
0
,
x
2
+
y
2
>
1
{\displaystyle \ x<0,y>0,x^{2}+y^{2}>1}
arccos
x
+
arccos
y
=
arccos
[
x
y
−
1
−
x
2
⋅
1
−
y
2
]
,
{\displaystyle \arccos x+\arccos y=\arccos[xy-{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}],}
ak platí
x
+
y
≥
0
{\displaystyle \ x+y\geq 0}
arccos
x
+
arccos
y
=
2
π
−
arccos
[
x
y
−
1
−
x
2
⋅
1
−
y
2
]
,
{\displaystyle \arccos x+\arccos y=2\pi -\arccos[xy-{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}],}
ak platí
x
+
y
<
0
{\displaystyle \ x+y<0}
arccos
x
−
arccos
y
=
−
arccos
[
x
y
+
1
−
x
2
⋅
1
−
y
2
]
,
{\displaystyle \arccos x-\arccos y=-\arccos[xy+{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}],}
ak platí
x
≥
y
{\displaystyle \ x\geq y}
arccos
x
−
arccos
y
=
arccos
[
x
y
+
1
−
x
2
⋅
1
−
y
2
]
,
{\displaystyle \arccos x-\arccos y=\arccos[xy+{\sqrt {1-x^{2}}}\cdot {\sqrt {1-y^{2}}}],}
ak platí
x
<
y
{\displaystyle \ x<y}
arctg
x
+
arctg
y
=
arctg
x
+
y
1
−
x
y
,
{\displaystyle \operatorname {arctg} x+\operatorname {arctg} y=\operatorname {arctg} \,{\frac {x+y}{1-xy}},}
ak platí
x
y
<
1
{\displaystyle \ xy<1}
arctg
x
+
arctg
y
=
π
+
arctg
x
+
y
1
−
x
y
,
{\displaystyle \operatorname {arctg} x+\operatorname {arctg} y=\pi +\operatorname {arctg} \,{\frac {x+y}{1-xy}},}
ak platí
x
>
0
,
x
y
>
1
{\displaystyle \ x>0,xy>1}
arctg
x
+
arctg
y
=
−
π
+
arctg
x
+
y
1
−
x
y
,
{\displaystyle \operatorname {arctg} x+\operatorname {arctg} y=-\pi +\operatorname {arctg} \,{\frac {x+y}{1-xy}},}
ak platí
x
<
0
,
x
y
>
1
{\displaystyle \ x<0,xy>1}
arctg
x
−
arctg
y
=
arctg
x
−
y
1
+
x
y
,
{\displaystyle \operatorname {arctg} x-\operatorname {arctg} y=\operatorname {arctg} {\frac {x-y}{1+xy}},}
ak platí
x
y
>
−
1
{\displaystyle \ xy>-1}
arctg
x
−
arctg
y
=
π
+
arctg
x
−
y
1
+
x
y
,
{\displaystyle \operatorname {arctg} x-\operatorname {arctg} y=\pi +\operatorname {arctg} {\frac {x-y}{1+xy}},}
ak platí
x
>
0
,
x
y
<
−
1
{\displaystyle \ x>0,xy<-1}
arctg
x
−
arctg
y
=
−
π
+
arctg
x
−
y
1
+
x
y
,
{\displaystyle \operatorname {arctg} x-\operatorname {arctg} y=-\pi +\operatorname {arctg} {\frac {x-y}{1+xy}},}
ak platí
x
<
0
,
x
y
<
−
1
{\displaystyle \ x<0,xy<-1}
arccotg
x
+
arccotg
y
=
arccotg
x
y
−
1
x
+
y
,
{\displaystyle \operatorname {arccotg} x+\operatorname {arccotg} y=\operatorname {arccotg} {\frac {xy-1}{x+y}},}
ak platí
x
>
−
y
{\displaystyle \ x>-y}
arccotg
x
+
arccotg
y
=
arccotg
x
y
−
1
x
+
y
+
π
,
{\displaystyle \operatorname {arccotg} x+\operatorname {arccotg} y=\operatorname {arccotg} {\frac {xy-1}{x+y}}+\pi ,}
ak platí
x
<
−
y
{\displaystyle \ x<-y}
arcsin
x
+
arccos
x
=
π
2
,
{\displaystyle \arcsin x+\arccos x={\frac {\pi }{2}},}
ak platí
|
x
|
≤
1
{\displaystyle \ |x|\leq 1}
arctg
x
+
arccotg
x
=
π
2
{\displaystyle \operatorname {arctg} x+\operatorname {arccotg} x={\frac {\pi }{2}}}
Cyklometrické funkcie sa dajú tiež vyjadriť použitím logaritmov a komplexných čísel :
arcsin
x
=
−
i
log
(
i
x
+
1
−
x
2
)
arccos
x
=
−
i
log
(
x
+
x
2
−
1
)
=
π
2
+
i
log
(
i
x
+
1
−
x
2
)
=
π
2
−
arcsin
x
arctg
x
=
i
2
(
log
(
1
−
i
x
)
−
log
(
1
+
i
x
)
)
=
arccotg
1
x
arccotg
x
=
i
2
(
log
(
1
−
i
x
)
−
log
(
1
+
i
x
)
)
=
arctg
1
x
{\displaystyle {\begin{aligned}\arcsin x&{}=-i\,\log \left(i\,x+{\sqrt {1-x^{2}}}\right)&{}\\\arccos x&{}=-i\,\log \left(x+{\sqrt {x^{2}-1}}\right)={\frac {\pi }{2}}\,+i\log \left(i\,x+{\sqrt {1-x^{2}}}\right)={\frac {\pi }{2}}-\arcsin x&{}\\\operatorname {arctg} x&{}={\frac {i}{2}}\left(\log \left(1-i\,x\right)-\log \left(1+i\,x\right)\right)=\operatorname {arccotg} {\frac {1}{x}}\\\operatorname {arccotg} x&{}={\frac {i}{2}}\left(\log \left(1-{\frac {i}{x}}\right)-\log \left(1+{\frac {i}{x}}\right)\right)=\operatorname {arctg} {\frac {1}{x}}\\\end{aligned}}}
Rektorys, K. a spol.: Přehled užité matematiky I. , Prometheus, Praha, 2003, 7. vydání. ISBN 80-7196-179-5
Bartch, Hans-Jochen: Matematické vzorce , SNTL, Praha 1987, 2. revidované vydání