Portál:Matematika/Odporúčaný článok/39 2011
Riemannov integrál, pomenovaný podľa nemeckého matematika Bernharda Riemanna, je v matematickej analýze historický prvá rigorózna definícia pojmu integrál funkcie na intervale. Aj keď je Riemannov integrál pre niektoré teoretické úlohy menej vhodný, je to jedna z najjednoduchších definícii integrálu. Niektoré z týchto technických ťažkostí sa dajú vyriešiť Riemannovým-Stieltjesovým integrálom a väčšina z nich Lebesgueovým integrálom.
Úvod
[upraviť zdroj]Nech je nezáporná reálna funkcia na intervale a nech je plocha pod touto funkciou na intervale (pozri Obrázok 2). Zaujíma nás obsah plochy . Hneď ako ju vypočítame, označíme ju symbolom:
Základnou myšlienkou Riemannovho integrálu je použiť veľmi jednoduché aproximácie tejto plochy. Získaním stále lepších a lepších aproximácií môžeme povedať, že "v limite" dostaneme presne plochu pod krivkou.
Je potrebné poznamenať, že na intervaloch, kde funkcia môže nadobúdať tak kladné, ako aj záporné hodnoty, integrál bude korešpondovať so znamienkovým obsahom, čiže obsahom plochy nad osou mínus obsahom plochy pod ňou.