Preskočiť na obsah

Eulerovo číslo

z Wikipédie, slobodnej encyklopédie

Číslo e alebo Eulerovo číslo (podľa švajčiarskeho matematika Leonharda Eulera, prípadne aj Napierova konštanta podľa škótskeho matematika Johna Napiera, ktorý zaviedol logaritmy) je matematická konštanta a základ prirodzeného logaritmu. Popri π a imaginárnej jednotke i, je e jedno z najvýznamnejších čísel v matematike. Má viacero ekvivalentných definícií, najznámejšie z nich sú uvedené nižšie. Používa sa pri exponencionálnych výpočtoch úrokov, výpočtoch teórie pravdepodobnosti, pri výpočte prírastku stromov a živočíšneho tkaniva, v elektronike a inde. Jeho hodnota na 30 desatinných miest je:

Definície

[upraviť | upraviť zdroj]

Tri najznámejšie definície:

1. Definícia e ako limity
2. Definícia e ako súčet nekonečného radu
3. Definícia e ako jediného reálneho čísla x > 0, pre ktoré platí, že

Bolo dokázané, že tieto tri definície sú ekvivalentné.

Vlastnosti

[upraviť | upraviť zdroj]

Exponenciálna funkcia je dôležitá, pretože je to jediná funkcia (okrem funkcie ), ktorá je svojou vlastnou deriváciou, a z toho vyplýva že aj svojou vlastnou primitívnou funkciou:

, kde C je konštanta.

Eulerovo číslo je iracionálne (tzn. jeho desatinný rozvoj je nekonečný a neperiodický) a transcendentné (tzn. nedá sa vyjadriť ako koreň mnohočlenov s celočíselnými koeficientami)

Eulerov vzťah

[upraviť | upraviť zdroj]

Medzi číslami platí vzorec pochádzajúci od Eulera:

Je to špeciálny prípad všeobecnejšieho vzťahu, ktorý dáva do súvisu funkcie sínus, kosínus a exponenciálnu funkciu:

Externé odkazy

[upraviť | upraviť zdroj]