Hyperbolická dráha
![](http://upload.wikimedia.org/wikipedia/commons/thumb/8/89/OrbitalEccentricityDemo.svg/220px-OrbitalEccentricityDemo.svg.png)
![](http://upload.wikimedia.org/wikipedia/commons/thumb/9/94/Gravity_Wells_Potential_Plus_Kinetic_Energy_-_Circle-Ellipse-Parabola-Hyperbola.png/250px-Gravity_Wells_Potential_Plus_Kinetic_Energy_-_Circle-Ellipse-Parabola-Hyperbola.png)
Hyperbolická dráha v astrodynamike alebo nebeskej mechanike je trajektória akéhokoľvek telesa okolo centrálneho telesa, ktorého rýchlosť je dostatočná, aby toto teleso uniklo gravitácii centrálneho telesa.
Za zjednodušených predpokladov letí teleso po hyperbolickej dráhe do nekonečna, kde dosiahne konečnú rýchlosť. Podobne ako parabolické trajektórie sú všetky hyperbolické trajektórie tiež únikovými trajektóriami. Špecifická energia hyperbolickej dráhy je pozitívna (ε>0).
Hyperbolická dráha je Keplerova dráha s excentricitou väčšou ako 1.
Parametre popisujúce hyperbolickú dráhu
[upraviť | upraviť zdroj]Rovnako ako eliptická môže byť aj hyperbolická dráha definovaná pre daný systém jeho hlavnou polosou a excentricitou. Pre pochopenie pohybu telesa po hyperbolickej dráhe sú užitočné ďalšie parametre. Nasledujúca tabuľka uvádza hlavné parametre opisujúce dráhu telesa po hyperbolickej trajektórii.
Element | Symbol | Formula | using (or ), and |
---|---|---|---|
Standard gravitational parameter | |||
Eccentricity (>1) | |||
Semi-major axis (<0) | a | ||
Hyperbolic excess velocity | |||
(External) Angle between asymptotes | [1] | ||
Impact parameter (semi-minor axis) | |||
Semi-latus rectum | |||
Periapsis distance | |||
Specific orbital energy | |||
Specific angular momentum |
Hlavná polos, špecifická a charakteristická energia, hyperbolická rýchlosť v nekonečne
[upraviť | upraviť zdroj]Pri hyperbolickej trajektórii hlavná polos ( ) nie je zreteľná, ale môže byť skonštruovaná. Je to vzdialenosť od periapsidy k bodu, v ktorom sa pretínajú asymptoty.
Hlavná polos (a) je spojená so špecifickou obežnou energiou (ε) a charakteristickou energiou ( C3 ) cez hyperbolickú rýchlosť v nekonečne ( ).
kde: je štandardný gravitačný parameter a je charakteristická energia, bežne používaná pri plánovaní medziplanetárnych misií.
V prípade hyperbolickej trajektórie je celková energia pozitívna, pre eliptickú obežnú dráhu je negatívna.
Rýchlosť
[upraviť | upraviť zdroj]Obežnú rýchlosť ( v ) telesa pohybujúceho sa po hyperbolickej trajektórii možno vypočítať z rovnice vis-viva ako:
kde:
- je štandardný gravitačný parameter ,
- je radiálna vzdialenosť obiehajúceho telesa od centrálneho telesa ,
- je (záporná) hlavná polos .
Pre obežnú rýchlosť ( v ) platí nasledujúci vzťah:
- vesc je úniková rýchlosť a je hyperbolická rýchlosť v nekonečne.
Radiálna hyperbolická dráha
[upraviť | upraviť zdroj]Radiálna hyperbolická dráha je neperiodická trajektória na priamke, kde relatívna rýchlosť oboch objektov vždy prekračuje rýchlosť úniku. Existujú dva prípady: telesá sa vzďaľujú od seba alebo sa k sebe približujú. Ide o hyperbolickú obežnú dráhu s hlavnou polosou = 0 a excentricitou = 1. Hoci excentricita je 1, toto nie je parabolická obežná dráha.
Pozri aj
[upraviť | upraviť zdroj]Referencie
[upraviť | upraviť zdroj]- VALLADO, David A.. Fundamentals of Astrodynamics and Applications, Third Edition. Hawthorne, CA. : Hawthorne Press, 2007. ISBN 978-1-881883-14-2.
Externé odkazy
[upraviť | upraviť zdroj]- https://web.archive.org/web/20081008041919/http://homepage.mac.com/sjbradshaw/msc/traject.html
- https://web.archive.org/web/20050316084931/http://www.go.ednet.ns.ca/~larry/orbits/ellipse.html
- http://www.braeunig.us/space/orbmech.htm#hyperbolic
Zdroj
[upraviť | upraviť zdroj]Tento článok je čiastočný preklad článku Hyperbolic trajectory na anglickej Wikipédii.